Regional differences in cholinergic regulation of potassium current in feline esophageal circular smooth muscle.
نویسندگان
چکیده
Potassium channels are important contributors to membrane excitability in smooth muscles. There are regional differences in resting membrane potential and K(+)-channel density along the length of the feline circular smooth muscle esophagus. The aim of this study was to assess responses of K(+)-channel currents to cholinergic (ACh) stimulation along the length of the feline circular smooth muscle esophageal body. Perforated patch-clamp technique assessed K(+)-channel responses to ACh stimulation in isolated smooth muscle cells from the circular muscle layer of the esophageal body at 2 (distal)- and 4-cm (proximal) sites above the lower esophageal sphincter. Western immunoblots assessed ion channel and receptor expression. ACh stimulation produced a transient increase in outward current followed by inhibition of spontaneous transient outward currents. These ACh-induced currents were abolished by blockers of large-conductance Ca(2+)-dependent K(+) channels (BK(Ca)). Distal cells demonstrated a greater peak current density in outward current than cells from the proximal region and a longer-lasting outward current increase. These responses were abolished by atropine and the specific M(3) receptor antagonist 4-DAMP but not the M(1) receptor antagonist pirenzipine or the M(2) receptor antagonist methoctramine. BK(Ca) expression along the smooth muscle esophagus was similar, but M(3) receptor expression was greater in the distal region. Therefore, ACh can differentially activate a potassium channel (BK(Ca)) current along the smooth muscle esophagus. This activation probably occurs through release of intracellular calcium via an M(3) pathway and has the potential to modulate the timing and amplitude of peristaltic contraction along the esophagus.
منابع مشابه
Regional differences in the response of feline esophageal smooth muscle to stretch and cholinergic stimulation.
There are no objective differences in neural elements that explain regional differences in neural influences along the smooth muscle (SM) esophageal body (EB). Regional differences in muscle properties are present in the lower esophageal sphincter (LES). This study examines whether regional differences in SM properties exist along the EB and are reflected in length-tension relationships and res...
متن کاملRegional differences in L-type Ca channel expression in feline lower esophageal sphincter
Muinuddin, Ahmad, Youhou Kang, Herbert Y. Gaisano, and Nicholas E. Diamant. Regional differences in L-type Ca channel expression in feline lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol 287: G772–G781, 2004. First published June 3, 2004; 10.1152/ajpgi.00102.2004.—In humans and cats, muscle from the lower esophageal sphincter (LES) circular region exhibits greater spontaneou...
متن کاملIon channel diversity in the feline smooth muscle esophagus.
We have characterized ion-channel identity and density differences along the feline smooth muscle esophagus using patch-clamp recording. Current clamp recording revealed that the resting membrane potential (RMP) of esophageal smooth muscle cells (SMC) from the circular layer at 4 cm above the lower esophageal sphincter (EBC4; LES) were more depolarized than at 2 cm above LES. Higher distal Na(+...
متن کاملFeline lower esophageal sphincter sling and circular muscles have different functional inhibitory neuronal responses.
The lower esophageal sphincter (LES) has a circular muscle component exhibiting spontaneous tone that is relaxed by nitric oxide (NO) and a low-tone sling muscle that contracts vigorously to cholinergic stimulation but with little or no evidence of NO responsiveness. This study dissected the responses of the sling muscle to nitrergic innervation in relationship to its cholinergic innervation an...
متن کاملRegional differences in L-type Ca2+ channel expression in feline lower esophageal sphincter.
In humans and cats, muscle from the lower esophageal sphincter (LES) circular region exhibits greater spontaneous tone than LES sling muscle, whereas the sling muscle is much more responsive to cholinergic stimulation. Despite physiological and pharmacological evidence for the presence of L-type Ca2+ channel current (ICa,L) activity in LES circular muscle, the identity of this channel has not b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 288 6 شماره
صفحات -
تاریخ انتشار 2005